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Large amounts of time series of spatial snapshot data have been collected or generated
for the monitoring and modeling of environmental systems. Those time series of data
also provide the opportunity to study the movements and dynamics of many different
natural phenomena. While the snapshot organization is conceptually simple and
straightforward, it does not directly capture or represent the dynamic characteristics
of the phenomena. This study presents computational methods to identify dynamic
events from time series of spatial snapshots. Events are represented as directed
spatiotemporal graphs to characterize their initiation, development, movement, and
cessation. Graph-based algorithms are used to analyze the dynamics of the events. The
method is applied to time series of high-resolution radar reflectivity images during one
of the deadliest storm outbreaks that impacted 15 states of southeastern United States
between 23 and 29 April 2011. As shown in this case study, convective storm events
identified using our methods are consistent with previous studies, and our analysis
confirms that the left split/merger occurs more than right split/merger in those con-
vective storm events, which confirms theory, numerical simulations, and other
observed case studies. While this study does not differentiate between storm modes,
the method shows potential for capturing a more detailed climatology of precipitation
characteristics.

Keywords: storm event; graph model; split and merger; movement

1. Introduction

Environmental monitoring systems collect vast amounts of data and the time series of
spatial snapshot data may be used to observe and investigate a diverse array of natural
phenomena. The common characteristic of snapshot data is the constant change of
variables in space and time, which implies a dynamic system behavior. While organizing
data as snapshots is conceptually simple and straightforward, it does not directly capture
or represent the dynamic characteristics of geographic phenomena. Many scholars argue
that the next real breakthrough in the modeling of geographic phenomena will come when
we move from an object-oriented view to an event-oriented view (Peuquet and Duan
1995, Yuan 2001, Worboys 2005).

Many definitions of events exist in the literature. The general consensus is that
events are associated with localized processes in space and time that change the attribute
or state of an object or a field. Zacks and Taversky (2001) investigated the nature of
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events in human perception and conception and defined events as a segment of time at a
given location that was conceived by an observer with a beginning and an end. In this
context, when only the change of position is relevant, those objects are commonly
referred to as moving objects. The trajectories of those objects can be visualized by their
space–time paths (Shaw et al. 2008) and events can be identified by location-change
(e.g., go-to-work and have-lunch). For this type of events, the existence and endurance
of object identities are the key premise for event identification and analysis. Similar to
moving objects, naturally occurring phenomena such as convective storms are also
dynamic entities with identifiable spatial and temporal variations within them. In
contrast to moving objects that have predefined identities, the changing and clustering
of attributes in space and time actually define the identities. At a more fundamental
level, this type of event originates from the plenum view in the philosophy of science,
particularly in modern physics, where ‘the spatiotemporal clusters of known attributes
are the things’ (Couclelis 1992). An event is defined here as an individual occurrence or
episode that has a definite start and end.

There is a pressing need to explore and understand how events evolve with 2D or 3D
time series of snapshots in many different fields. Nevertheless, geographers are challenged
to effectively identify and depict events due to the large volume of data, the complexity of
identifying events, and the limitations of conventional GIS data models. Data organization
and analysis tools that are available in current GIS are largely based on the map metaphor
and provide limited support for querying and exploring events. As a consequence,
intensive human intervention is typically required when searching spatiotemporal data
sets for specific events or processes. For many types of spatiotemporal data, the volume
produced will quickly exceed the ability for analysts to manually explore all of the
available data. Thus, there is a great need to develop automated processing methods
and representation models to explore spatiotemporal data efficiently. As McIntosh and
Yuan (2005) pointed out, the power and usefulness of GIS technology could be signifi-
cantly enhanced by representing geographic events in GIS data models and providing
functions to explore the characteristics of geographic events.

Langran and Chrisman (1988) are among the first who proposed the modeling
concepts for temporal GIS. Galton (1995, 2000) used an instant-based model of time
to describe the movement of events. Yuan and Hornsby (2007) summarized six types of
spatiotemporal models (time-stamped, change-based, event-based, movement-based,
activity-based, and process-based) and emphasized that the temporal dimension should
first be integrated into these models in order to capture the dynamic features of
geographic phenomena. There have been many attempts to extend spatiotemporal GIS
data models based on the event perspective. Peuquet and Duan (1995) proposed an
event-based spatiotemporal data model (ESTDM) where an event was a change in state.
The sequence of events through time, which represents the spatiotemporal manifestation
of some processes, is noted via a time-line called an ‘event list’. However, this model
cannot directly reveal the relations between geographic entities such as a split, merger,
combinatorial situation, or the filiation relations of geographic entities that belong to the
same family (Thibaud et al. 2013). Claramunt and Thériault (1995) stated that events
connect the geographic entities distributed across land to form independent networks.
They proposed a theoretical structure that distinguishing between spatial, temporal, and
thematic domains. However, the theoretical model does not directly describe the whole
life cycle of geographic events, and it mainly focuses on the changes between different
time steps. Yuan (2001) made one of the first attempts at extracting states, processes,
and events out of time series snapshots of precipitation data and stated that an event was
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a spatiotemporal aggregate of a process and that a process was a sequential change of
state over space and time. McIntosh and Yuan (2005) followed Yuan’s (2001) approach
to organize snapshots of distributed geographic phenomena into zones, sequences,
processes, and events using rainfall as an example. Although the approach was inno-
vative, more efficient computational representations are needed to advance the extrac-
tion, exploration, and analysis of the identified events. Event representation is important
not only for understanding the composition of events, but also for storing and analyzing
the events.

Recognizing the need for an automated methodology to extract and represent
dynamic geographic phenomena from large spatiotemporal data sets, the goal of this
work is to develop event-based computational approaches to facilitate the identification,
representation, and analysis of geographic events in space and time. The underlying idea
is that an event can be systematically delineated with an origin, a development stage, a
movement stage, and a potential cessation or dissolution phase. A directed spatiotem-
poral graph model is proposed to represent the dynamic characteristics of events, and
graph algorithms are explored to generalize and analyze the events. The directed
spatiotemporal graph model is not entirely new and it has been used to study geographic
dynamics (Guo et al. 2010, Del Mondo et al. 2010, Stell et al. 2011, Thibaud et al.
2013). Del Mondo et al. (2010) used the spatiotemporal graph model to represent the
spatial, spatiotemporal, and filiation relations, and Thibaud et al. (2013) applied the
model for marine dune dynamics analysis and representation. However, previous studies
mainly focused on the visualization of dynamic geographic phenomena using the graph
model. There is still a gap in applying graph algorithms to analyze the dynamics of
geographic phenomena.

The method developed here will be applied to storm events inferred from weather
radar reflectivity images (1 km spatial resolution, and 5-minute temporal resolution).
Precipitation occurs over a large range of spatial and temporal scales, from a convective
air mass thunderstorm that persists for 1 hour to frontal precipitation stretching across
many states that can persist for days. Atmospheric conditions ultimately control the
precipitation. While it is possible to use this method for any type of precipitation, our
work will apply the method to a multiday convective storm outbreak. There are several
reasons for this choice. Many discrete storms (events) occur during a single severe
weather outbreak. Convective storms undergo many changes over their lifetime including
splits and mergers. A theoretical framework exists for how these storms behave under
given atmospheric conditions. Finally, severe convective storm events are a public safety
concern since they generate heavy rain, hail, and lightning strikes, which can potentially
cause damage to lives and property (Han et al. 2008). Being able to objectively extract
relevant information from vast amounts of radar data during severe storm outbreaks is an
important step forward in constructing a better climatology of convective storms by better
quantifying their life cycles and movement characteristics (i.e., initiation, development,
splitting, merging, and dissipation).

This study intends to illustrate how the graph model can be used to represent and
analyze dynamic geographic phenomena since the methods and data model can be
extended to other dynamic environmental events. Approaches for automatically identify-
ing and tracking convective storm events are described in Section 2. Sensitivity analysis
of the tracking algorithm to the reflectivity, area, and overlap threshold is discussed in
Section 3. The directed spatiotemporal graph model for representing, storing, and analyz-
ing storm event life cycles is presented in Sections 4 and 5. A case study illustrates the
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capability of the proposed methods in Section 6. A summary of the research and possible
future work is provided in Section 7.

2. Tracking storm events

2.1. Detection of storm objects

Geographic phenomena in space and time are usually identified as a field, an object, or a
field-object (Goodchild et al. 2007). Different criteria such as scale, boundary, attributes,
and processes (Bian 2007) were used to extract objects of interest from different data
sources. Many distributed dynamic geographic phenomena like rainfall have properties
that vary across space and time. The existence and delineation of these objects depend on
the thresholds used to define them (McIntosh and Yuan 2005). For a storm object that is
remotely sensed by a precipitation radar, the object is a contiguous region of high radar
reflectivity separated from other areas of high reflectivity (Lakshmanan et al. 2009).

The first step is the identification of storm objects on each radar image. A widely used
approach is to extract a set of connected pixels that is above an intensity threshold (Dixon
and Wiener 1993, Feidas and Cartalis 2001, McIntosh and Yuan 2005, Tucker and Li
2009). The connected pixels are delineated through an approach known as component
labeling in digital image processing (Haralick and Shapiro 1992) and region group in
raster GIS software packages. Using a single, fixed intensity threshold often works well
for intense storm objects, but for initiating storm objects there may only be several pixels
over the threshold (Lakshmanan et al. 2009). To help mitigate this problem, different
thresholds can be applied to distinguish different types of storm objects. For example,
Johnson et al. (1998) extracted storm objects using seven thresholds from 30 to 60 dBZ.
The lowest, 30 dBZ, was used to identify storm objects and then the threshold was
increased to extract more intense storm objects. Because of seasonal, regional, and
climatological variability, a more general and advanced algorithm, the watershed trans-
form algorithm, was also used in many studies (Lakshmanan et al. 2009, Zahraei et al.
2013). The lack of predefined thresholds is the biggest advantage of the watershed
transform method because it tests all possible thresholds (Lakshmanan et al. 2009).

Storm object identification is simplified in this study by choosing the single threshold
technique so that the focus is on the representation and analysis of the dynamic geo-
graphic phenomena. A storm object is defined as a contiguous region where the reflec-
tivity and area are both above certain thresholds. A component-labeling algorithm with 4-
connected radar reflectivity pixels was applied to extract storm objects. Since we are not
interested in weak events and focus on convective storm events, the reflectivity values
should be between 30 and 40 dBZ (Dixon and Wiener 1993), and the reflectivity threshold
was set to 35 dBZ in our study. The area threshold is 20 km2 to remove noise and ground
clutter and is similar to other studies (Dixon and Wiener 1993, Lakshmanan et al. 2009).
We, however, investigate the sensitivity of our tracking algorithm to those two thresholds,
where reflectivity was set to 30, 35, and 40 dBZ, and area was set to 20, 25, and 30 km2.
The results are discussed in Section 3.

2.2. Tracking of storm events

A critical component of a storm-tracking algorithm is to link the storm objects in one
snapshot to the storm objects in the previous snapshot (Lakshmanan and Smith 2010).
This linkage builds storm objects’ correspondence/matching over time into an event. A
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large body of literature exists on tracking storms using satellite or radar data. A prominent
storm matching algorithm used throughout the world is the Thunderstorm Identification,
Tracking, Analysis, and Nowcasting (TITAN) (Dixon and Wiener 1993). In TITAN,
spatial overlap and combinatorial optimization matching are combined. A storm object
at ti gets the same trajectory of the storm object at ti – 1 that has significant spatial overlap.
If there is no significant overlap of the storm objects at successive snapshots, the
Hungarian algorithm would be performed, which is an optimization algorithm that con-
siders similar characteristics (size, shape, etc.) and moving distance among the matching
storm objects. Johnson et al. (1998) employed a different method that calculated the
centroid distance of storm objects within a specified search radius to determine if the
storm objects belong to the same trajectory.

These two major tracking methods are both centroid-based methods that first extract
the separate storm objects from individual radar or satellite image and then track the storm
objects over consecutive images. These methods track individual storm objects efficiently
and calculate the properties of storm objects at each temporal instant (Johnson et al.
1998). Another type of tracking method is the cross-correlation algorithm, which calcu-
lates the motion vector field and forecasts the movement of storm objects (Li et al. 1995).
There are also studies using the optical flow technique to infer the velocity pattern of
moving objects (Horn and Schunck 1981). In meteorological studies, for example, Bowler
et al. (2004, 2006) used the optical flow constraint for an improved radar echo tracking
algorithm. The strength of the cross-correlation and optical flow approach is determining
the direction and velocity of storm objects. However, they cannot identify and track single
storm objects (Johnson et al. 1998).

We also developed a refined centroid-based algorithm that simultaneously considers
the topology/spatial overlap, centroid distance of storm objects, and movement direction.
Any tracking method that uses spatial overlap is ultimately dependent on the temporal
sampling frequency of the data set. There must be a high enough sampling rate to detect
spatial overlap (Turdukulov et al. 2007). The radar data used in this research samples
every 5 minutes. Typical convective storm motion is around 16 m/s, i.e., 58 km/h (Mohee
and Miller 2010), so an average storm moves ~4.5 km between samples. Given the area
threshold of 20 km2, the temporal resolution is more than sufficient.

To outline the method, three consecutive snapshots at different time (t1, t2, and t3) are
used as an example (Figure 1). There are a total of five storm objects (a1, b1, c1, d1, e1) at
t1. The locations of the storm objects at t2 are predicted from t1 and recorded as t2ʹ.
Because the storm objects at t1 were at the beginning of their trajectories, their velocities
are initialized as zero. As a consequence, the storm objects at t2ʹ keep the same locations
as they are at t1. Based on the storm movement speed and temporal resolution of the radar
data, a centroid distance threshold of 10 km is used to search possible candidates that
match objects at t2 (a2, b2, c2, d2, e2) with the objects at t1. For example, objects a2, b2, and
c2 within the red dashed circle at t2 are matching candidates for a1 at t1. If the centroid of a
storm object at t2 was more than 10 km from the centroid of its nearest storm object at t2,
then this storm object is not matched with any storm objects at t2. This indicates that the
storm has dissipated and the event has ended, e.g., d1 and e1. Among all the matching
candidates that satisfy the centroid distance threshold, a spatial overlap function F
(Equation (1)) is then calculated to determine whether the candidates belong to the
same trajectory of the storm objects at t1. In this equation, A Oð Þ is the overlap area
between two storm objects at the two time steps, and A S1ð Þ and A S2ð Þ are the area of the
storm objects at the first and second time step, respectively. Based on the equation, an
exact spatial overlap between two storm objects results in a value of 2 for F. No spatial
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overlap results in a value of 0 for F. If the value of F is above a certain threshold, the two
storm objects are considered in the same trajectory, and therefore belong to the same
event. In this research, the threshold of F is set to 0.6 based on the TITAN algorithm
(Dixon and Wiener 1993). The sensitivity of the tracking algorithm to F is discussed in
Section 3.

F ¼ A Oð Þ
A S1ð Þ þ

A Oð Þ
A S2ð Þ (1)

After calculating the above spatial overlap function, a situation that two or more objects
satisfy the threshold may arise. In our example, a1 and b1 both satisfy the F threshold with
a2, and b1 could also match with b2. The four storm objects belong to the same trajectory/
event. Storm object c2 could match with c1. Storm objects d2 and e2 do not match with
any objects at t1, so they are the initial storm objects of new events which start at t2. Storm
objects at t2 are then matched with the storm objects at t3 using the same method. Since
the initial storm velocity at t2 is no longer zero, the predicted velocity of storm objects at
t2 is calculated as follows:

V Sð Þ ¼ 1

2
Pn

i¼1 A Sið Þ
1

�t

Xn
i¼1

A Sið Þ � SiSð Þ þ
Xn
i¼1

A Sið Þ � V Sið Þð Þ
" #

(2)

where V Sð Þ is the velocity of a storm object S at t2. Si represents the storm objects at t1
that have the same trajectory as S. For example, if S is a2 at t2, Si represents a1 and b1 at t1.
A Sið Þ is the area of the corresponding storm object at t1, SiS is the movement vector

Figure 1. Storm event tracking examples during three time steps.
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between the centroids of mass of Si and S, and V Sið Þ is the velocity of Si. If S is a newly
generated storm object at t2, its velocity is the same as its nearest storm object. However,
if the centroid distance of the two storm objects is more than 10 km, then V Sð Þ is
considered to be zero (Morel and Senesi 2002). The area of storm objects at t1 is used
as a weighting factor to better predict the velocity of storm objects at t2. The centroid
distance and spatial overlap thresholds are also performed to match storm objects at t2
and t3.

When the size of a storm rapidly expands or contracts, its centroid could change
significantly between consecutive snapshots. This may produce unrealistic storm move-
ment. To include only realistic storm movement, the change of movement direction is also
checked when deciding whether two storm objects belong to the same event. The angle θ
between the predicted movement direction of a storm object at t2 and the direction from its
centroid to the centroid of a matching storm object at t3 is calculated. Only the matching
storm objects with an angle less than 90° are considered in the same event.

With our extraction algorithm, there are six filiation relationships: generation, continuity,
split, merger, combinatorial, and dissipation (Zahraei et al. 2013) between storm objects in
an event. In Figure 1, five storm events are extracted (shown with different colors in
Figure 1) from three consecutive snapshots. Storm object d2 is newly generated because it
is not associated with any storm objects in the previous time step. Storm object c2 is a
continuation of storm object c1 from t1 to t2. Split means a storm object at time ti–1 is
associated with two or more storm objects at time ti (Morel and Senesi 2002). In Figure 1,
storm object a2 splits into a3 and b3. When a merger occurs, two or more storm objects at
time ti–1 can be linked to a storm object at time ti. For example, d2 and e2 merged into d3
from t2 to t3. Split and merger occur simultaneously in the combinatorial situation. For
example, one part splitting from b1 merges with a1 to form a2, and the other part that splits
from b1 contributes to the initiation of b2. Dissipation occurs when a storm object is not
matched with any objects at the next snapshot such as storm object b2 at t2 that disappears
at t3.

Previous studies (Dixon and Wiener 1993, Morel and Senesi 2002, Han et al. 2009,
Zahraei et al. 2013) dealt with merging and splitting cases by extending a maximum of
one trajectory and terminating the remainder for a merger case or by extending a
maximum of one trajectory and generating new trajectories to the remainder for a split
case. This method is comparatively easy, but it cannot capture the complete life cycle and
the interactions among storm objects. In contrast, our method records the filiation relation-
ships among all the storm objects in the time series snapshots that satisfy the matching
criteria (overlapping area, centroid distance, and movement direction).

3. Sensitivity analysis

One of the key aspects of any method that uses thresholds is how sensitive the results are
to changes in the threshold value. There are three values that must be set in this method:
the minimum reflectivity, area, and overlap. The choice of any particular threshold is
dictated by the application. For instance, the focus of this application is identifying and
tracking convective storm events that are at least of moderate strength, so the minimum
reflectivity is set to 35 dBZ, the minimum area is set to 20 km2, and the overlap is 0.6. It
is important to understand how sensitive the results are to the choice of threshold,
especially if the ultimate goal of this method is to construct a climatology. Sensitivity is
obtained by varying the reflectivity to 30, 35, and 40 dBZ, the area to 20, 25, and 30 km2,
and the overlap was incremented by 0.2 from 0 to 2. Varying all of these leads to 90
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combinations. To save computational time, the test area chosen is 32.5°N–40.5°N and
93.5°W–103.5°W (the blue dashed boundary in Figure 6), and to the storm outbreak
occurred 23–29 April 2011.

If the thresholds are more restrictive (e.g., higher minimum reflectivity threshold or
minimum area), then there will of course be a fewer number of total storms. A more useful
metric for sensitivity would be changes to physical parameters such as movement speed.
There is some information on climate statistics of storm motion, but these studies tend to
be spatially and temporally very limited. For example, a simple climatology of storms that
does not include any information on storm splitting or merging was created for a five year
period over just North Dakota (Mohee and Miller 2010). They found an average move-
ment speed of 16.4 m/s (59 km/h). Even though this is not the same study area, it at least
provides some benchmark that can be used to compare results from the more sophisticated
method developed here.

Box plots in Figure 2 demonstrate the sensitivity of movement speed to changes in the
three thresholds. In Figure 2a, there are nine combinations of reflectivity and area thresh-
old for each overlap threshold. It is easy to see that the movement speed is very sensitive
to the overlap threshold, and the overall movement speed decreases with the increase of
overlap threshold. The explanation is that the lower the storm events’ speed, the more
overlap between two consecutive images. Using 59 km/h as an expected value, the

Figure 2. (a) Overlap versus movement speed. (b) Reflectivity versus movement speed. (c) Area
versus movement speed.
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movement speed is likely greatly underestimated when overlap threshold is greater than
1.4. Using thresholds of 0.4, 0.6, and 0.8 are much closer to the expected value and are a
more appropriate choice. Sensitivity of movement to the reflectivity and area thresholds is
much less, which is expected since movement of any developing storm, regardless of size
or intensity, depends primarily on the steering wind. Figure 2b suggests that an increase of
reflectivity is weakly correlated to an increase in the movement speed. This may actually
not be an artifact of the methodology, but a real phenomenon. Particularly intense storms
develop their own internal structure (pressure perturbations) that accelerates the move-
ment of the storm complex. Of course, these findings will have to be examined in more
rigor and detail and is the next step after developing this method.

Finally, Figure 2c suggests that the movement speed is not sensitive to the area
threshold. The above analysis reveals that the storm tracks are relatively insensitive to
the reflectivity and area thresholds in the storm identification step, but the storm tracks are
the most sensitive to the overlap threshold. We stress that proper choice of thresholds
depends on the research question, and this method allows for easy sensitivity analysis by
simply changing thresholds in the storm identification step. For our analysis, we choose
35 dBZ, 20 km2, and 0.6 overlap. We are not recommending that these are the correct or
only thresholds for convective storms research. Researchers could adjust these thresholds
based on the sensitivity analysis and their own needs.

4. A directed spatiotemporal graph model

It is natural to use a directed spatiotemporal graph model (Figure 3a) to depict the
evolution, change, and interaction of storm events. The nodes in the graph, V(G),
represent the spatially contiguous storm objects at each time step. The directed edges in
the graph, E(G), denote the spatial and temporal linkages (i.e., filiation relations) among
storm objects at two adjacent snapshots where direction indicates the time sequence. As a
result, this graph model contains spatial, temporal, and filiation relations. The vector
polygonal footprint represents the geometric shape of a single storm object. The approx-
imate ellipse in Figure 3a is used as a simplified representation of the storm object
geometry, which works fairly well for distinct storm objects. Figure 3a is the three-
dimensional view (x, y, t) of the directed spatiotemporal graph derived from Figure 1.
To facilitate the analysis of the storm events, the spatiotemporal graph is also projected in

Figure 3. (a) The storm events and their directed spatiotemporal graph models identified from
Figure 1. (b) The projection of the first storm graph on the x–y plane.
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two dimensions (x, y) in Figure 3b. The nodes are further simplified using the reflectivity-
weighted centroid of a storm object to capture the core of the most intense precipitation.
This graph model describes the evolution of a storm event at three consecutive snapshots
over the entire life span of the storm and includes the generation, continuity, split, merger,
combinatorial, and dissipation filiation relationships.

A number of node-level, edge-level, and event-level spatial and non-spatial attributes
are stored in a graph database to represent the storm events (Figure 4). A node object
stores the information of a single storm object, and an edge object describes the filiation
relationships among storm objects. An event graph object describes different features of a
storm event, such as the number of nodes and edges, duration, movement speed and
direction, and other attributes. All the nodes and edges within the same storm event are
linked to the event graph with a many-to-one relationship. As a consequence, the GraphID
is used as a foreign key in the node and edge object.

5. Graph-based storm event analysis

The full advantage of our graph model is realized when the graph properties of storm
events are investigated. The remainder of this section will concentrate on how to use
graph theory/algorithms to generalize and assess storm events’ interactions.

5.1. Generalization of storm events

Complex or detailed geographic phenomena often require simplification or generalization
to understand (Guo et al. 2010). Any generalization must capture the key properties of the
original geographic phenomena. The structures and relationships of storm objects on
consecutive images can be quite complicated. As a consequence, the graph representation
could be too detailed and complex, especially when the storm events have many small
storm objects. The distribution of reflectivity/precipitation is one of the most important
characteristics of storm events. A generalization of an event, i.e., the skeleton of the event,

Figure 4. Components and their primary properties of the directed graph model for storm events.
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can be achieved by using the maximum reflectivity path between the starting and ending
storm objects of the event (Figure 5). The maximum reflectivity path can be found by first
calculating the reverse reflectivity of the ith node as

Wi ¼ max Rð Þ � Ri þmin Rð Þ (3)

where max(R) and min(R) are the maximum and minimum reflectivity of all the storm
nodes in a graph, and Ri is the reflectivity of the ith node. The reverse reflectivity of the
ith node is used as the weight of all the in-edges of the ith node in the directed graph. The
lesser Wi as weight for a node, the higher reflectivity. The maximum reflectivity path can
then be obtained using the classic Dijkstra’s shortest path algorithm on the graph.
Specifically, the maximum reflectivity paths between each starting and ending storm
nodes are first calculated and the maximum reflectivity path is then identified for the
storm event. The generalization method can be applied recursively to any branches that
are connected to the generalized event path.

5.2. Interaction among storm objects

It is common for storm objects to interact over consecutive images. In a storm event, two
independent storm objects may merge into one object or one object may split into several
smaller objects. These interactions can be depicted as the in-degree/out-degree of a node
in a directed graph. The in-degree of a node is the number of edges directed into that
node. The out-degree of a node is the number of edges directed out of that node. The
number of in-degree/out-degree could reveal the interactions or filiation relationships
among storm objects (Table 1). In our case study, we will further examine the split and
merger that occur on the left and right side along the main movement direction of an event
(Figure 5).

Figure 5. A storm event graph showing the maximum accumulative reflectivity path (red line), left
split (purple line), right split (black line), left merger (blue line), and right merger (green line) along
its movement direction.

International Journal of Geographical Information Science 11

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
K

an
sa

s 
M

ed
ic

al
 C

en
tr

e]
 a

t 0
9:

02
 2

8 
A

ug
us

t 2
01

5 



6. A case study

A convective storm outbreak that occurred on 23–29 April 2011 is used to illustrate both
how the directed spatiotemporal graph model is constructed and also what kind of
information can be obtained about the spatiotemporal characteristics of storm events
(Figure 6). The storm outbreak contained many discrete cells and there were 355 tornados
confirmed by the National Weather Service. This was a high-impact event that caused
substantial property damage and fatalities.

The data used in this case study are the final reflectivity product (N0 R) provided by
Iowa Environmental Mesonet (IEM). The United States National Weather Service oper-
ates the NEXRAD (Next Generation Radar) program that monitors precipitation over
almost all of the country. This is a network of S-band (10 cm) Weather Surveillance 1988
Doppler radars (WSR-88D, Choi et al. 2009), which has been recently upgraded to dual-
polarization radar. The IEM receives, processes, and archives the NEXRAD level III
products with a 5-minute temporal resolution (http://mesonet.agron.iastate.edu/docs/nex

Figure 6. Case study area which covers 15 states (red) and an example radar image showing the
reflectivity values at 8:00, 24 April 2011 UTC.

Table 1. The relationship between node in-degree/out-degree number
and storm object filiations.

Number of
in-degree

Filiation
relation

Number of
out-degree

Filiation
relation

0 Start 0 End
1 Continuation 1 Continuation
≥2 Merge ≥2 Split
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rad_composites/). The radar reflectivity images are stored in the PNG format with a
WGS84 spatial reference system (EPSG: 4326) that has a spatial resolution of equivalent
to 1 km.

Convection can be classified into several archetypes including squall lines, multi-
cellular, bow echoes, derechos, super cells, disorganized, and other subcategories (Smith
et al. 2012). The specific dynamics of an individual storm depends on many factors
including wind shear, magnitude of instability, interaction with neighboring cells, and so
on. One of the most studied types of storm is the supercell. Theory, numerical simulations,
and observed case studies have shown that if a supercell splits when there is a veering
wind profile, then the right-moving cell is likely to strengthen while the left-moving cell is
likely to weaken. Conversely, if there is a backing wind profile than the left-moving cell is
likely to strengthen while the right-moving cell is likely to weaken. Veering wind profiles
are far more common than backing wind profiles so that any climatology of supercells that
split should reveal a preference for right-moving cells while the left-movers would
dissipate. The distinct advantage of this method over past techniques is the inclusion of
the splitting and merger information that can be used to create a preliminary climatology
of the behavior of convective precipitation.

While we recognize that convection in this case study is not all strictly one mode (e.g.,
supercells), we examine all convection as a single group when identifying the character-
istics of this particular outbreak. Separating convective mode is not a trivial task and often
requires subjective methods (e.g., Smith et al. 2012). The primary goal of this work is to
begin to objectively construct and apply a directed spatiotemporal graph model to identify,
store, represent, link, and track storm objects. This initial step must also efficiently deal
with spatiotemporal data management because of the high volume of radar data. Work is
already underway to refine storm classification and interaction, but that is beyond the
scope of this article. The method developed here is meant to be the foundation for
continued study of these complex systems.

6.1. Implementation

A prototype system was developed using MATLAB to process the reflectivity data,
delineate storm objects, track storm events, visualize, verify, and analyze the events.
There are four primary components in the work flow (Figure 7): the spatiotemporal
database generation from raw NEXRAD snapshots, storm object identification, storm
event tracking and event graph generation, and storm event visualization and analyses
based on graph theory/algorithms.

Raw radar snapshots of PNG files are converted into the MATLAB file format (.mat
files) to build a spatiotemporal database that is used as the input for the next step. After
applying the threshold to a radar image, a component labeling algorithm delineates
spatially contiguous storm objects and their properties are calculated and saved with the
objects (component 2 in Figure 7). The tracking process outlined in Section 2 is then
applied to track the storm events based on the storm objects delineated on two consecutive
images. During the tracking process, the lineage or filiation relations are recorded to build
event graphs. When all the nodes in an event graph at ti cannot find any matching storm
objects at ti + 1, the complete event graph (i.e., the whole life cycle) of the storm event has
been identified. The event graph, including its nodes, edges, and attributes at node/edge/
graph levels, are saved and the event is deleted from memory. The above process is
applied sequentially to all the images to identify the events in the database (component 3
in Figure 7). The last component takes the event graphs as input and provides functions

International Journal of Geographical Information Science 13

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
K

an
sa

s 
M

ed
ic

al
 C

en
tr

e]
 a

t 0
9:

02
 2

8 
A

ug
us

t 2
01

5 

http://mesonet.agron.iastate.edu/docs/nexrad_composites/


for event visualization, animation, generalization, and interaction assessment. The visua-
lization and animation interface, shown in Figure 8, could be used to browse event graph
attributes, the maximum reflectivity path, and the visualization and animation of event

Figure 7. The general workflow of storm event identification and analysis developed using
MATLAB.

Figure 8. The user interface for event visualization and animation.
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graphs. In Figure 8, a storm event is shown with the red skeleton and one right split with
black line.

6.2. Characteristics of storm events

The program was run on a UNIX server machine with 2 six-core AMD Opteron 2435
processors at 2.6 GHz with 64 GB of RAM, and the total running time is about 10 hours.
In the study area there were a total of 7297 storm events that have a duration of at least
15 minutes, meaning they span at least three consecutive radar images. Figure 9 shows the
distribution and tracks of the storm events with their maximum reflectivity paths. The
storm events are mainly concentrated in a broad swath from Texas to Ohio. Figure 10a
shows that the bulk of storm paths (86.9%) are to the northeast. This movement is
consistent with the mid-level steering wind during the event. The histogram of the
storm event movement speed (Figure 10b) depicts a positively skewed Gaussian distribu-
tion. The average and median movement speeds of the storm events are 61 and 63 km/h,
respectively. This is around the same value found in the climatology analysis done by
Mohee and Miller (2010). The histogram of the storm event duration (Figure 10c) depicts
an exponential decay distribution similar to Novo et al. (2013). The mean duration of the
storm events is 36.5 minutes and 1141 out of 7297 storm events lasted more than 1 hour
(15.6%). Most of storm events (44.4%) had a duration from 15 to 20 minutes. Among the
7297 storm events, just over a quarter of storm events (1928) have either splits or mergers
(meansplit = 0.17, meanmerger = 0.38). There are 863 storm events that split and most of
them (796) have one or two splits during their life spans. There are 1529 storm events that
merged and most of them (1274) have only one or two mergers during their life spans.

Figure 9. Map of generalized tracks of the storm events identified from the radar data between 23
April 2011 and 29 April 2011 in the study area.
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One advantage of our method is the inclusion of additional details such as storm
object split and merger. In this case study, the ambient vertical wind profile was strongly
veering. Thus, a reasonable hypothesis would be that given all of the convection occur-
ring, there should be a preference for right-splitting storms to survive while left-splitting
storms dissipate. Again, we do not discriminate between storm modes, but the group as a
whole should still show this.

The splitting and merging within the storm objects are separated into whether they are
on the left or right side of the primary storm track as defined by the maximum radar
reflectivity path. Examples of these splits and mergers are given in Figure 5. For these
events, the locations of left and right split/merger are shown in Figures 11 and 12. Table 2
gives the distribution of the left and right splits and mergers of the storm events. Among
the storm events that have splits or mergers, these splits and mergers only occur once or
twice during their life spans. There are only 29 (12) events that have more than two left
(right) splits. There are typically more mergers that occur during a storm event than storm
splitting. There are 104 (87) storm events that have three or more left (right) mergers. It is
rare for a storm event to have more than six splits or mergers.

The differences between the number of left and right splits and mergers are shown in
Figures 11 and 12, respectively. The left split and merger appear more than the right split
and merger. To test whether there is a preference for the side of splitting or merging, a
t-test is performed on the mean of the difference between the number of left and right
splitting and merging. The null hypothesis is that the mean is equal to 0, which implies
that the chances of having a left or right split or merger is the same for the events. The

Figure 10. Characteristics of the storm events: (a) rose diagram of event velocity; (b) histogram of
event speed; (c) histogram of event duration.
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results in Table 3 show that p values for both split and mergers are less than 0.05 so that
the null hypothesis is rejected. We should accept that the left split/merger appear more
than right split/merger. This is consistent with what would be expected under conditions
with a veering wind profile. Again, this should really be refined by storm mode, but this is
a promising result that stresses the potential of using this objective technique to better
quantify the properties of convective storms.

Figure 11. (a) The sides (left or right relative to storm movement direction) of the splits occurred
in storm events, and the difference between the number of left splits and right splits. (b) A detailed
view in the dashed box in (a).
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7. Conclusions

This work presented the event tracking method and graph model to identify, represent, and
analyze dynamic spatiotemporal phenomena from time series of snapshot data. Storm
events were chosen in this research in part because of the multiple interactions among
storm objects during an event’s life span. A directed spatiotemporal graph model was used

Figure 12. (a) The sides (left or right relative to storm event movement directions) of the mergers
occurred in storm events, and the difference between the number of left mergers and right mergers.
(b) A detailed view in the dashed box in (a).
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to represent the evolution and the filiation relationships among storm objects within an
event. In the model, storm objects identified from radar reflectivity images were denoted
by graph nodes. The interactions among storm objects were tracked using improved
algorithms, and these relationships were denoted by graph edges. General event charac-
teristics and side preference of split and merger in the storm events were analyzed based
on graph algorithms.

The 23–29 April 2011 storm event outbreak spanning in a wide swath from Texas to
Ohio was utilized to demonstrate the development and application of our event tracking
method and the directed graph model. The tracking algorithm identified all the storm
objects belonging to the same storm event. Various attributes at the node, edge, and event/
graph level were calculated and stored. Storm events were generalized using the shortest-
path graph algorithm where the cost at a graph node is radar reflectivity. Several basic
properties of the convection storms that occurred during this outbreak were obtained and
were characteristically consistent with previous studies. As a check on the physical
consistency of this representation of the storms, the side of the split and merger was
also examined. Given that the vertical wind shear was veering, it was expected that if a
storm split, then the cell that moves to the right would be stronger and last longer than the
cell that moves to the left. Even though the data was not separated into storm mode, there
was a significant preference for the left splitting storms to be weaker and dissipate while
the right splitting storms were stronger and lasted longer.

Our research demonstrated that the event approach provided an extension to GIS to
represent and analyze dynamic behaviors existing in time series of spatial snapshot data.
As the amount of spatiotemporal data have been constantly collected or generated with
better spatial and temporal resolutions, science has entered into an era where discovery of

Table 2. The summary of split and merger appeared per storm event.

Total
number of
LS per storm
event

Number
of storm
events

Total
number of
RS per

storm event

Number
of storm
events

Total number
of LM per
storm event

Number
of storm
events

Total number
of RM per
storm event

Number
of storm
events

1 427 1 367 1 740 1 600
2 76 2 55 2 191 2 128
3 14 3 7 3 60 3 40
4 7 4 3 4 22 4 20
5 6 5 1 5 12 5 13
6 1 6 1 6 6 6 8
8 1 7 2 7 2

8 2 8 1
9 1

10 1
13 1

LS and RS represent left split and right split. LM and RM represent left merger and right merger.

Table 3. The t-test result for mean of difference between left split/merger and right split/merger.

Level of significance p-Value for split p-Value for merger

0.05 3.768 × 10−6 1.4726 × 10−7
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new knowledge can be obtained through the analysis and mining of ‘big data’. The event
approach represents a transformation of heterogeneous spatiotemporal data into events
that could be compared and integrated across time and location to support the study of the
interactions and dynamic behavior of environmental systems. In the future, we plan to
study the spatiotemporal characteristics of storm events in the central United States using
long-term radar reflectivity data. We are also interested in modifying and using the graph
edit distance, a graph matching algorithm, to assess the similarities in geometry and
movement dynamics of storm events, which may provide useful information for storm
forecasting. In addition, the spatiotemporal graph model will be further validated in other
application domains, such as ocean eddies, wildfire, and urban heat islands.
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